metal-organic papers

Received 23 March 2006

Accepted 23 March 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Wen-Jie Lu,* Kai-Long Zhong and Yi-Min Zhu

Department of Chemical and, Environmental Engineering, Wuyi University, Jiangmen, Guangdong Province, People's Republic of China

Correspondence e-mail: wjlu_56@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.031 wR factor = 0.077 Data-to-parameter ratio = 17.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(1,10-phenanthroline- $\kappa^2 N, N'$)(sulfato- $\kappa^2 O, O'$)cadmium(II) 1,2-ethanediol solvate

In the structure of the title compound, $[Cd(SO_4)(C_{12}H_8N_2)_2]$ - $C_2H_6O_2$, the $[Cd(SO_4)(C_{12}H_8N_2)_2]$ and $C_2H_6O_2$ entities are connected by hydrogen bonding. The formula unit lies on a special position of site symmetry 2. The Cd^{II} centre is coordinated by four N atoms from two chelating 1,10phenanthroline ligands and two O atoms from the bidentate sulfate ligand in a distorted octahedral geometry. The two chelating NCCN groups subtend a dihedral angle of 74.50 (9)°.

Comment

The sulfate ion, as a second ligand, has been found to be versatile when generating mixed-ligand complexes with d^{10} metal centres. It can act as a monodentate, bidentate or bidentate-bridging ligand, giving rise to monomeric, dimeric or polymeric structures in many complexes (Harvey *et al.*, 2000; 2003; Li *et al.*, 2003; Paul *et al.*, 2002). As such, the coordination modes can be tailored by introducing different neutral ligands into the complexes. The title compound, (I), was obtained unintentionally during an attempt to synthesize a mixed-ligand complex of Cd^{II} with 1,10-phenanthroline (phen) and 1,2-bis(2-pyridyl)ethylene *via* a solvothermal reaction. Here, we present the crystal structure of (I), which is isomorphous with the recently reported cobalt(II) structure (Zhong *et al.*, 2006).

Other Cd-phen complexes with a monodentate sulfate ligand (Li *et al.*, 2003) or with a bidentate-bridging sulfate ligand (Harvey *et al.*, 2000) have been synthesized and characterized structurally by X-ray diffraction. Many other mixedligand cadmium complexes containing bidentate sulfate ligands (Harvey *et al.*, 2003; Paul *et al.*, 2002) have also been synthesized and reported. The title complex represents an additition to such complexes.

© 2006 International Union of Crystallography All rights reserved

The structure of (I), showing the atom-numbering scheme and with displacement ellipsoids drawn at the 50% probability level. Dashed lines represent O-H···O interactions. H atoms not involved in hydrogen bonds have been omitted for clarity. [Symmetry code for unlabelled atoms: $1 - x, y, \frac{1}{2} - z$.]

The metal complex and solvent components of (I) (Fig. 1) are held together by hydrogen bonding. A twofold rotation axis passes through the Cd and S atoms, and also through the centre of the solvent C-C bond. In the complex molecule, each Cd^{II} centre is coordinated by four N atoms from two chelating phen ligands and two O atoms from a bidentate sulfate ligand in a distorted octahedral geometry (Table 1). The geometry of the phen and sulfate ligands is in good agreement with those observed in many cadmium complexes. The Cd-N bond distances [2.327 (2)-2.343 (2) Å] are in good accord with those reported in six-coordinate Cd-phen complexes, e.g. $[Cd(phen)_2(H_2O)_2](C_4H_2O_4)\cdot 4H_2O$, (II) [2.338 (2)–2.383 (2) Å; Yang et al., 2003]. The N–Cd–N bite angle and the dihedral angle between the two chelating NCCN groups are also similar to those found in (II). The Cd-O bond distance [2.361 (2) Å] and O-Cd-O bite angle [59.98 (9) $^{\circ}$] are close to those found in the cadmium complex $[H_3N(CH_2)_3NH_3][Cd_2(H_2O)_2(SO_4)_3]$ [2.334 (5)–2.545 (6) Å and 57.9 (2)°, respectively; Paul et al., 2002].

Experimental

The title compound, as pale-yellow block-shaped crystals, was obtained by a procedure similar to that described previously by Zhong et al. (2006), using 3Cd(SO₄)₂·8H₂O instead of Co(SO₄)₂·-7H₂O.

Crystal data

$[Cd(SO_4)(C_{12}H_8N_2)_2] \cdot C_2H_6O_2$	$D_x = 1.682 \text{ Mg m}^{-3}$
$M_r = 630.94$	Mo- $K\alpha$ radiation
Monoclinic, $C2/c$	Cell parameters from 3452
a = 18.022 (2) Å	reflections
b = 12.1978 (14) Å	$\theta = 3.2-27.5^{\circ}$
c = 13.2366 (15) Å	$\mu = 1.01 \text{ mm}^{-1}$
$\beta = 121.115 \ (2)^{\circ}$	T = 293 (2) K
V = 2491.2 (5) Å ³	Block, pale yellow
Z = 4	$0.35 \times 0.29 \times 0.20$ mm

Data collection

Bruker SMART CCD 1K area- detector diffractometer	3101 independent reflections 2710 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.031$
Absorption correction: multi-scan	$\theta_{\rm max} = 28.3^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -24 \rightarrow 12$
$T_{\min} = 0.719, \ T_{\max} = 0.823$	$k = -16 \rightarrow 16$
8598 measured reflections	$l = -17 \rightarrow 17$
Refinement	

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.077$ S = 1.093101 reflections 173 parameters H-atom parameters constrained

$w = 1/[\sigma^2(F_0^2) + (0.0348P)^2]$ + 1.3354P] where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ _3 $\Delta \rho_{\rm max} = 0.49 \ {\rm e} \ {\rm \AA}$ $\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$

Table 1		
Selected geometric parameters	(Å,	°)

Cd1-N1	2.327 (2)	\$1-O1	1.4841 (18)
Cd1-N2	2.343 (2)	O3-C13	1.372 (5)
Cd1-O1	2.361 (2)	C13-C13 ⁱ	1.460 (10)
S1-O2	1.4548 (19)		
N1-Cd1-N2	71.91 (7)	$O1^{i} - S1 - O1$	105.37 (16)
O1-Cd1-O1 ⁱ	59.98 (9)	O3-C13-C13 ⁱ	117.3 (4)
$O2^{i} - S1 - O2$	110.38 (17)		

Symmetry code: (i) $-x + 1, y, -z + \frac{1}{2}$.

Table 2

Hyo	lrogen	-bond	geometry	7 (.	A, °΄).
-----	--------	-------	----------	------	-------	----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
O3−H3···O2	0.82	2.01	2.807 (3)	164

The H atoms of the phen ligand were positioned geometrically and allowed to ride on their parent atoms, with C-H = 0.93 Å and $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$. The H atoms of the 1,2-ethanediol solvent were located in a difference map and then allowed to ride on their parent atoms, with C-H = 0.97 and O-H = 0.82 Å, and with $U_{iso}(H)$ = $1.2U_{eq}(C)$ or $1.5U_{eq}(O)$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

X-ray data were collected at the Chinese University of Hong Kong.

References

- Bruker (1998). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Harvey, M., Baggio, S., Mombrú, A. & Baggio, R. (2000). Acta Cryst. C56, 771-774.
- Harvey, M., Baggio, S., Russi, S. & Baggio, R. (2003). Acta Cryst. C59, m171m174.

- Li, X., Cao, R., Bi, W., Sun, D. & Hong, M. (2003). Acta Cryst. E59, m230–m231.
- Paul, G., Choudhury, A. & Rao, C. N. R. (2002). J. Chem. Soc. Dalton Trans. pp. 3859–3867.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.Yang, J., Ma, J.-F., Li, L. & Liu, J.-F. (2003). Acta Cryst. E59, m568–
- m570. Thong K L. Zhu X M & Lu W L (2006). Acta Crust E62 m631 m633
- Zhong, K.-L., Zhu, Y.-M. & Lu, W.-J. (2006). Acta Cryst. E62, m631-m633.